164 MATHEMATICS

One way is to expand $(2x + 1)^3$ using binomial theorem and find the derivative as a polynomial function as illustrated below.

$$
\frac{d}{dx}f(x) = \frac{d}{dx}\left[(2x+1)^3 \right]
$$

$$
= \frac{d}{dx} (8x^3 + 12x^2 + 6x + 1)
$$

$$
= 24x^2 + 24x + 6
$$

$$
= 6 (2x + 1)^2
$$

Now, observe that
$$
f(x) = (h \circ g)(x)
$$

where $g(x) = 2x + 1$ and $h(x) = x^3$. Put $t = g(x) = 2x + 1$. Then $f(x) = h(t) = t^3$. Thus

$$
\frac{df}{dx} = 6(2x+1)^2 = 3(2x+1)^2 \cdot 2 = 3t^2 \cdot 2 = \frac{dh}{dt} \cdot \frac{dt}{dx}
$$

The advantage with such observation is that it simplifies the calculation in finding the derivative of, say, $(2x + 1)^{100}$. We may formalise this observation in the following theorem called the chain rule.

Theorem 4 (Chain Rule) Let *f* be a real valued function which is a composite of two

functions *u* and *v*; i.e., $f = v \text{ o } u$. Suppose $t = u(x)$ and if both $\frac{dt}{dt}$ $\frac{dt}{dx}$ and $\frac{dv}{dt}$ $\frac{dv}{dt}$ exist, we have *df dv dt dx dt dx* $=\frac{uv}{v}$.

We skip the proof of this theorem. Chain rule may be extended as follows. Suppose *f* is a real valued function which is a composite of three functions *u*, *v* and *w*; i.e.,

f = (*w* o *u*) o *v*. If $t = v(x)$ and $s = u(t)$, then

$$
\frac{df}{dx} = \frac{d(w \circ u)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}
$$

provided all the derivatives in the statement exist. Reader is invited to formulate chain rule for composite of more functions.

Example 21 Find the derivative of the function given by $f(x) = \sin(x^2)$.

Solution Observe that the given function is a composite of two functions. Indeed, if $t = u(x) = x^2$ and $v(t) = \sin t$, then

$$
f(x) = (v \text{ o } u) (x) = v(u(x)) = v(x^2) = \sin x^2
$$

Put
$$
t = u(x) = x^2
$$
. Observe that $\frac{dv}{dt} = \cos t$ and $\frac{dt}{dx} = 2x$ exist. Hence, by chain rule

$$
\frac{df}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx} = \cos t \cdot 2x
$$

It is normal practice to express the final result only in terms of *x*. Thus

$$
\frac{df}{dx} = \cos t \cdot 2x = 2x \cos x^2
$$

Alternatively, We can also directly proceed as follows:

$$
y = \sin(x^2) \Rightarrow \frac{dy}{dx} = \frac{d}{dx}(\sin x^2)
$$

$$
= \cos x^2 \frac{d}{dx}(x^2) = 2x \cos x^2
$$

Example 22 Find the derivative of tan $(2x + 3)$.

Solution Let $f(x) = \tan (2x + 3)$, $u(x) = 2x + 3$ and $v(t) = \tan t$. Then

$$
(v \circ u) (x) = v(u(x)) = v(2x + 3) = \tan (2x + 3) = f(x)
$$

Thus *f* is a composite of two functions. Put $t = u(x) = 2x + 3$. Then $\frac{dv}{dt} = \sec^2 t$ $\frac{dv}{dt} = \sec^2 t$ and

 $\frac{dt}{t} = 2$ *dx* $= 2$ exist. Hence, by chain rule

$$
\frac{df}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx} = 2\sec^2(2x+3)
$$

Example 23 Differentiate sin (cos (x^2)) with respect to *x*.

Solution The function $f(x) = \sin(\cos(x^2))$ is a composition $f(x) = (w \circ v \circ u)(x)$ of the three functions *u*, *v* and *w*, where $u(x) = x^2$, $v(t) = \cos t$ and $w(s) = \sin s$. Put 2 and $s = v(t) = \cos t$. Observe that $\frac{dw}{dt} = \cos s$, $\frac{ds}{dt} = -\sin t$ *dt x*

$$
t = u(x) = x^2
$$
 and $s = v(t) = \cos t$. Observe that $\frac{du}{ds} = \cos s$, $\frac{ds}{dt} = -\sin t$ and $\frac{du}{dx} = 2x$

exist for all real *x*. Hence by a generalisation of chain rule, we have

$$
\frac{df}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx} = (\cos s) \cdot (-\sin t) \cdot (2x) = -2x \sin x^2 \cdot \cos (\cos x^2)
$$

166 MATHEMATICS

Alternatively, we can proceed as follows:

$$
y = \sin (\cos x^2)
$$

Therefore
$$
\frac{dy}{dx} = \frac{d}{dx} \sin (\cos x^2) = \cos (\cos x^2) \frac{d}{dx} (\cos x^2)
$$

$$
= \cos (\cos x^2) (-\sin x^2) \frac{d}{dx} (x^2)
$$

$$
= -\sin x^2 \cos (\cos x^2) (2x)
$$

$$
= -2x \sin x^2 \cos (\cos x^2)
$$

EXERCISE 5.2

Differentiate the functions with respect to *x* in Exercises 1 to 8.

1. sin (x^2) **2.** $\cos (\sin x)$ **3.** $\sin (ax + b)$ **4.** sec $(\tan (\sqrt{x}))$ 5. $sin (ax + b)$ $\cos (cx + d)$ $ax + b$ $cx + d$ + + **6.** $\cos x^3 \cdot \sin^2(x^5)$ **7.** $2\sqrt{\cot(x^2)}$ **8.** $\cos(\sqrt{x})$ **9.** Prove that the function *f* given by

$$
f(x) = |x - 1|, x \in \mathbf{R}
$$

is not differentiable at $x = 1$.

10. Prove that the greatest integer function defined by

$$
f(x) = [x], 0 < x < 3
$$

is not differentiable at $x = 1$ and $x = 2$.

5.3.2 *Derivatives of implicit functions*

Until now we have been differentiating various functions given in the form $y = f(x)$. But it is not necessary that functions are always expressed in this form. For example, consider one of the following relationships between *x* and *y*:

$$
x - y - \pi = 0
$$

$$
x + \sin xy - y = 0
$$

In the first case, we can *solve for* y and rewrite the relationship as $y = x - \pi$. In the second case, it does not seem that there is an easy way to *solve for y*. Nevertheless, there is no doubt about the dependence of y on x in either of the cases. When a relationship between *x* and *y* is expressed in a way that it is easy to *solve for y* and write $y = f(x)$, we say that *y* is given as an *explicit function* of *x*. In the latter case it

168 MATHEMATICS

5.3.3 *Derivatives of inverse trigonometric functions*

We remark that inverse trigonometric functions are continuous functions, but we will not prove this. Now we use chain rule to find derivatives of these functions.

Example 26 Find the derivative of *f* given by $f(x) = \sin^{-1} x$ assuming it exists.

Solution Let $y = \sin^{-1} x$. Then, $x = \sin y$.

Differentiating both sides w.r.t. *x*, we get

$$
1 = \cos y \frac{dy}{dx}
$$

dy 1 1 1

which implies that

$$
\frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\cos(\sin^{-1} x)}
$$

Observe that this is defined only for cos $y \neq 0$, i.e., $\sin^{-1} x \neq -\frac{\pi}{2}$, 2^{\degree} 2 $-\frac{\pi}{2}, \frac{\pi}{2}$, i.e., $x \neq -1, 1$,

i.e., $x \in (-1, 1)$.

To make this result a bit more attractive, we carry out the following manipulation. Recall that for $x \in (-1, 1)$, sin $(\sin^{-1} x) = x$ and hence

$$
\cos^2 y = 1 - (\sin y)^2 = 1 - (\sin (\sin^{-1} x))^2 = 1 - x^2
$$

Also, since $y \in \left[-\frac{\pi}{2},\right]$ 2^{\degree} 2 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, cos *y* is positive and hence cos *y* = $\sqrt{1-x^2}$

Thus, for $x \in (-1, 1)$,

$$
\frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - x^2}}
$$

Example 27 Find the derivative of *f* given by $f(x) = \tan^{-1} x$ assuming it exists.

Solution Let $y = \tan^{-1} x$. Then, $x = \tan y$.

Differentiating both sides w.r.t. *x*, we get

$$
1 = \sec^2 y \frac{dy}{dx}
$$

which implies that

$$
\frac{dy}{dx} = \frac{1}{\sec^2 y} = \frac{1}{1 + \tan^2 y} = \frac{1}{1 + (\tan(\tan^{-1} x))^2} = \frac{1}{1 + x^2}
$$

Finding of the derivatives of other inverse trigonometric functions is left as exercise. The following table gives the derivatives of the remaining inverse trigonometric functions (Table 5.4):

